

	PYTHON PROGRAMMING FOR BEGINNERS

	A Hands-On Crash Course with Step-by-Step Projects to Learn Python Fast and Build Real-World Skills

	Ahmad Al Khatib

	THE 2026 UPDATED EDITION

	

Authorization

	Published via Amazon Kindle Direct Publishing (KDP). The author authorizes Amazon to distribute this book under the KDP Terms and Conditions.

	Disclaimer

	This book is provided for educational purposes only. The author and publisher make no guarantees regarding results obtained from the misuse of the code, tools, or techniques described in this book. The author and publisher are not responsible for any damage or loss arising from the misuse of the material.

	Code Use Permission

	Code examples in this book may be used in personal or commercial projects. Attribution is appreciated but not required.

	Trademarks

	All product names, logos, and brands are property of their respective owners. Any mention of third-party trademarks is for identification purposes only and does not necessarily imply endorsement.

	First Edition: January 2026

	Website: https://ahmad-khatib.com/en/

	Contact: ahmad@ahmad-khatib.com

	

Dedication

	I dedicate this work to my loving, close-knit family, under whose warmth I accomplished this endeavor; to my aunts Amal and Sahar, my uncle Dr. Anas Al-Khatib, who supervised the linguistic review of the Arabic version of this book, my uncle Brigadier General Dr. Hani Al-Khatib, my aunts, and my entire family, each and every one of them; and my friend Professor Khaled Hanqir, who encouraged me to complete this work.

	I also dedicate this book to an exceptional figure, a leader among nations—one of those rare individuals who may only appear once in a century—who combines sound leadership, sharp vision, and creativity. His support for scientific research through his vision has placed it first regionally and among the top globally, and his influence motivated me to complete this book. I dedicate this work to His Royal Highness, Crown Prince of Saudi Arabia and Prime Minister, Prince Mohammed bin Salman bin Abdulaziz Al Saud.

	And finally, I dedicate this book to one whose qualities I cannot fully describe, my refuge in hardship and ease, in sorrow and joy—my loving mother, Samar Al-Khatib.

	

Contents at a Glance

	Introduction

	Downloading and Installing the Book’s Requirements

	Chapter 1: An Exploratory Tour in Python

	Chapter 2: Numbers and Strings and Some Basic Operations

	Chapter 3: Lists and Loops

	[image: Present outline] BONUS Jupyter-Ready Interactive Book File

	Chapter 4: The if Conditional Statement

	Chapter 5: Dictionary, Tuple, and Set

	Chapter 6: The Conditional Loop, While Loop

	Chapter 7: Functions

	Chapter 8: The Class

	Chapter 9: File Management, Importing, and Some Basics

	Conclusion

	

Contents in Detail

	Dedication

	How to Use this Book

	Stay Connected

	Introduction

	Downloading and Installing the Book’s Requirements

	1 – Downloading and Installing Python

	2 – Downloading and Installing PyCharm

	2.1 – An Exploratory Tour of PyCharm

	2.1.i – What is PyCharm?

	2.1.ii – The PyCharm Interface

	What is the Virtual Environment?

	2.2 – Downloading and Installing the Required Packages/Libraries

	Chapter 1: An Exploratory Tour in Python

	1 – The print() Function

	2 – Variables and Values

	3 – The Methods: .title(), .lower(), and .upper()

	Chapter One Exercise

	Chapter 2: Numbers and Strings and Some Basic Operations

	1 – Numbers

	2 – Use Cases of the Addition Operator (+) with Numbers VS. with Strings

	3 – The int() and str() Functions

	4 – Number Types in Python And Some Basic Arithmetic Operations

	5 – Commands Related to Working with Strings

	5.1 – Using Comma (,) Inside the print() Function to Combine Strings and Separate them with a Space

	5.2 – The Tab Space (\t), and Moving to a New Line (\n)

	5.3 – Defining Strings Using Triple Quotes (""" """)

	5.4 – Removing Spaces from String Edges: .strip(), .rstrip(), .lstrip()

	5.5 – Removing Text from String Boundaries: .removeprefix(), .removesuffix()

	5.6 – Using the Backslash (\) to Escape Special Characters or Split Long Code Lines

	6 – Adding Comments to Code (#)

	Chapter Two Exercise

	Solution

	Chapter 3: Lists and Loops

	Do you know about Minecraft?

	1 – Introduction to Lists

	1.1 – List Elements Ordering, and Element Code

	1.2 – Manipulating Lists

	1.2.i – Adding Elements to List

	1.2.i.a – Appending a New Element at the End of the List Using the .append() Method

	1.2.i.b – Adding a New Element at a Specific Order in a List Using the .insert() Method

	1.2.ii – Removing Elements from a List

	1.2.ii.a – Removing a Specific Element by its Value Using the .remove() Method

	1.2.ii.b – Removing a Specific Element by Its Index Using the keyword del

	1.2.ii.c – Removing a Specific Element from the List and Returning It Using the .pop() Method

	1.3 – Modifying a Specific List Element by Its Index

	1.4 – Rearranging List Elements

	1.4.i – Rearranging List Elements in Ascending or Descending Order Using the .sort() Method

	1.4.ii – Creating a Copy of a List Sorted in Ascending or Descending Order Using the sorted() Function

	1.4.iii – Reversing the Order of List Elements Using the .reverse() Method

	1.4.iv – Ordering Criteria

	2 – The for Loop

	3 – The range() and list() Functions

	4 – List Dynamics in Python

	5 – Statistical Functions: len(), min(), max(), and sum()

	Do you know about WhatsApp?

	6 – Splitting a List into Parts (Slices)

	6.1 – Slicing Syntax

	6.2 – Copying Lists Using Slice Syntax, or the .copy() Method

	7 – Defining Lists Using Comprehension Syntax

	Chapter Three Exercise

	Solution

	[image: Present outline] BONUS Jupyter-Ready Interactive Book File

	Installing and Running Jupyter

	Downloading and Opening the Interactive Book File in Jupyter

	Chapter 4: The if Conditional Statement

	Have you ever heard of the “clever fox” employee known as A.B.?

	1 – The Keyword if, The Equality operator ==, and The Inequality operator !=

	1.1 – Ignoring Letter Case in a Condition

	2 – if in, and if not in

	3 – (if >) Greater than, and (if <) Less than

	4 – Writing Compound Conditions Using the Keywords (and) and (or)

	5 – The if-elif-elif…-else Chain

	5.1 – The if-else Chain

	5.2 – The if-elif-else Chain

	Chapter Four Exercise

	Solution

	Crossword Challenge 1

	Chapter 5: Dictionary, Tuple, and Set

	Did you know that the fines imposed on Meta by the IDPC have reached into the billions of euros?

	1 – Tuples

	2 – Dictionaries

	2.1 – Accessing a Dictionary Value

	2.2 – Manipulating Dictionaries

	2.2.i – Adding Pairs to a Dictionary Using Value-Syntax

	2.2.ii – Deleting Key–Value Pairs from a Dictionary Using the del Keyword

	2.2.iii – Modifying a Specific Dictionary Value Using Its Syntax

	2.3 – The Methods .keys(), .values(), and .items()

	2.4 – Applying the for Loop Over the Dictionary

	2.4.i – Applying the for Loop Over the Dictionary’s Keys

	2.4.ii – Applying the for Loop Over the Dictionary’s Values

	2.4.iii – Applying The for Loop Over the Dictionary’s Pairs

	3 – The Set

	3.1 – The tuple() and set() Functions, The .add() and .update() Methods

	Chapter Five Exercise

	Solution

	Chapter 6: The Conditional Loop, While Loop

	1 – The input() Function

	1.1 – Handling Numeric Input from the input() Function

	2 – The Conditional Loop: while

	2.1 – Stopping a while Loop

	2.1.i – Stopping a while Loop Using a Sentinel Value (!=)

	2.1.ii – Stopping a while Loop Using a Flag

	2.1.iii – Stopping a while loop using the break keyword

	2.2 – Skipping a Specific Part of an Iteration Using the continue Keyword

	2.3 – Practical Examples of Using the while Loop

	2.3.i – Using the while Loop for Input Validation Until Correct Format

	2.3.ii – Using the while Loop to Move Elements from One Data Container to Another

	2.3.iii – Using the while Loop to Delete Specific Elements from a List

	3 – Discussion: ‘Beyond the Syntax, the Power of Algorithmic Thinking’

	Chapter Six Exercise

	Solution

	Crossword Challenge 2

	Chapter 7: Functions

	1 – Defining a Function

	1.1 – Defining a Function That Accepts an Argument

	1.2 – Defining a Function That Accepts More Than One Argument

	1.3 – Setting a Default Value for a Parameter

	1.4 – The return Keyword

	1.5 – Embedding Loops Inside a Function

	1.6 – Defining a Function That Accepts an Arbitrary Number of Arguments (*args)

	1.7 – Defining a Function That Accepts an Arbitrary Number of Keyword Argument Pairs (**kwargs)

	1.7.i – Passing a Dictionary to a **kwargs Function

	Chapter Seven Exercise

	Solution

	Crossword Challenge 3

	Chapter 8: The Class

	Introduction to Classes

	1 – Defining a Class

	1.1 – Attribute Access and Manipulation

	1.1.i – Manipulating an Object Attribute Using Attribute Access Syntax

	1.1.ii – Modifying an Attribute by Using a Method

	1.2 – Assigning a Default Value to an Attribute

	1.3 – Defining a Subclass Derived from a Superclass

	1.4 – Chapter Conclusion, Object Oriented Programming Acquired

	Chapter Eight Exercise

	Solution

	Crossword Challenge 4

	Chapter 9: File Management, Importing, and Some Basics

	1 – File Management in PyCharm IDE

	2 – Importing

	2.1 – Importing a Module

	2.2 – Importing Elements from a Module

	2.2.i – Importing Elements as Aliases

	3 – File Handling in Python

	3.1 – Accessing a File from a Module

	3.1.i – Opening a File with open() and Reading it with .read()

	3.1.ii – Reading File Lines One by One with .readlines()

	3.2 – Modifying a File Through the Module

	3.2.i – Opening/Creating a File in Write Mode open("name", "w"), and Adding New Content .write()

	3.2.ii – Opening a File in Append Mode open("name", "a") to Append Content Without Deleting It

	3.3 – Opening Files Stored Outside the Module’s Directory

	4 – f-string, float(), .count(), .split(), .replace(), %, and The eval() Function

	Chapter Nine Exercise

	Solution

	Conclusion

	Resources & Links

	Errata & Updates

	About the Author

	Next Steps

	

How to Use this Book

	

Who this book is for

	This book is designed for absolute beginners who want to learn Python from the ground up, with clear explanations and practical examples.

	What you need before you start

	
		Just a smart phone or tablet is enough.

		For richer experience: a computer running Windows, macOS, or Linux, with Python 3.x installed, and an editor or IDE (this book uses PyCharm, but the concepts work anywhere).

	

How the book is structured

	Part One builds your foundation: syntax, core concepts, and essential tools covering all basics from the ground up, distributed across nine chapters in a flexible systematic progression for absolute beginners, and accompanied by practice exercises.

	How to get the most value

	
		Type the code yourself at least once before copying.

		After each chapter, change the examples slightly and re-run them.

		If you hit an error, read the message carefully—errors are part of learning.

	When something feels confusing

	If a concept doesn’t feel clear immediately, keep going. Many topics become easier once you see them used repeatedly in different examples.

	
Stay Connected

	Website: https://ahmad-khatib.com/en/

	Mail: ahmad@ahmad-khatib.com

	[image: Image] [image: Image] [image: Image] [image: Image] [image: Image]

	@alkhatib_ahmad1

	
Introduction

	S

	ince the dawn of the twenty-first century, we have witnessed an immense digital surge, ushering in a new technological era that complements the digital revolution which began in the mid-twentieth century with the first appearance of the computer. This new era is characterized by advanced, intelligent electronic applications that invade our lives, expand into every aspect of them, and take root—parallel to a qualitative leap in the field of smart mobile devices, now accessible to everyone and spreading among the peoples of the earth like wildfire.

	This new technological era—the era of smart devices and applications—has left a profound and far-reaching impact on our modern lifestyle, making it easier on multiple levels. For instance, who among us does not use the WhatsApp application and even rely on it for many daily tasks? Whether for chatting with family and friends or for work and communication with clients… The same question applies to many other applications that have permeated our lives and claimed a significant share of them—from Google and its ease of access to information, to Facebook and Twitter and the social media revolution, to ChatGPT and Gemini and the surge of artificial intelligence… and many more applications whose role and influence have grown so immense that they have become an urgent daily necessity and a way of life that is hard to abandon.

	The deep impact this era has left on various aspects of our lives is a clear indication of the tremendous importance of the sciences that this great technology has brought us—namely, computing sciences. In this book, we will explore one essential and fascinating branch of these sciences: programming.

	To further illustrate the significance of programming and its pivotal role in this age, let us consider this example and imagine what might happen if—for some reason—all software systems in a given country were to fail:
Such a grim scenario would likely lead to the following: government offices grinding to a halt, citizens unable to complete transactions, internet service collapsing, wireless communications failing, banks, factories, companies, airplanes, and high-speed trains ceasing to operate, and so on… In short, it would be a catastrophic scenario akin to life coming to a standstill.
In the digital age we live in, most operations depend fundamentally and critically on computing technology and programming. Consequently, programming has become a vital, indispensable necessity of our time.

	This immense importance of programming has led to an enormous surge in demand for it, placing programming-related jobs at the forefront of the labor market. Learning this skill has become a golden opportunity to secure employment—not just any employment, but highly rewarding positions with generous pay, whether as permanent roles in companies or as freelance work that can be done from home.

	So, if you are among those looking to seize this great opportunity to boost your income by learning an enjoyable and not overly demanding skill, and you are wondering where and how to begin, this book is your gateway to achieving that—through learning the wonderful programming language Python.

	Who This Book Is For

	This book is for anyone who wants to learn programming with Python from the ground up—students, self-learners, and professionals building new skills or preparing for a career change. No prior programming experience is required, and you don’t need advanced math—basic computer skills, curiosity, and a bit of practice are enough. If you’re completely new to coding (or you’ve tried before and felt stuck), this book is designed to guide you toward writing your own programs with confidence.

	What is Python? And why did I choose it in this book as an entry point into the world of programming?

	Python is a widely renowned programming language developed by the brilliant Dutch programmer Guido Van Rossum, who named it “Python” after the famous comedy series Monty Python’s Flying Circus. The first version of this language was released in 1991, and it has grown tremendously to become one of the most popular and widely used programming languages in the world.

	Why Python?

	With hundreds of programming languages available, the first question that may come to mind for someone deciding to learn programming is: “Which programming language should I choose?” My answer is: “Choose Python without hesitation,” for many reasons, including:

	
		Ease of learning combined with powerful performance: Python is a smooth, easy-to-learn language, ideal for beginners, while also being extremely powerful and highly efficient for use in complex and advanced fields. For example, it is used in advanced research at NASA.

		High demand and lucrative returns: Python is among the most sought-after and widely used programming languages. It is employed by major global companies such as Google, Facebook, Instagram, YouTube, Amazon, Uber… Moreover, it ranks among the highest-paying programming languages. For instance, according to Glassdoor, the average annual salary for a Python programmer in the United States ranges from $80,000 to $120,000.

		Compatibility with different operating systems and versatility of use: Python is compatible with most well-known operating systems, such as iOS, Android, Linux, macOS, Windows, and others. This powerful language also boasts a wide range of applications—from automation to statistical and data sciences, to artificial intelligence, to web development, to game development, and more… along with many other reasons that make Python our language of choice.

	I now place in your hands this comprehensive book covering most of Python’s fundamentals, written in a simple, fluid style that is easy for both young and old to understand. I have structured it in a semi-interactive manner, including code samples alongside their execution results, and enriched it with detailed, abundant explanations—similar to student notes—so that readers can learn independently without needing additional lessons or training courses. I have organized its topics in a flexible, systematic progression1, dividing it into two parts:

	Part One: Fundamentals—distributed across nine essential chapters, accompanied by practice exercises.

	Part Two: Practical Applications—consisting of five projects for hands-on experience in building programs and applications, which include, in sequence:

	[image: Figure 1: Creating a video game from scratch that includes numerous features.]

	Figure 1: Creating a video game from scratch that includes numerous features.

	[image: Figure 2: Creating an interactive live chart program to analyze currency prices, receiving data via API.]

	Figure 2: Creating an interactive live chart program to analyze currency prices, receiving data via API.

	[image: Figure 3: Creating an automation program that opens a specific website and automatically performs predefined tasks.]

	Figure 3: Creating an automation program that opens a specific website and automatically performs predefined tasks.

	[image: Figure 4: Creating a web application that generates text and draws images using artificial intelligence via API.]

	Figure 4: Creating a web application that generates text and draws images using artificial intelligence via API.

	[image: Figure 5: Creating a dynamic personal portfolio and blogging platform that manages data through a customized administrative backend.]

	Figure 5: Creating a dynamic personal portfolio and blogging platform that manages data through a customized administrative backend.

	And I have equipped this comprehensive book, which covers most of the fundamentals of Python, with a detailed Table of Contents that can serve as a dictionary for this powerful, elegant, and easy-to-learn language.

	Ahmad Al Khatib

	

	

	
Downloading and Installing the Book’s Requirements

	I

	n this short setup chapter, we’ll install Python and PyCharm so you can write and run code exactly as we do throughout the book.

	1 – Downloading and Installing Python

	[image: Figure 5: Downloading Python]

	Figure 5: Downloading Python

	You can download the latest version of Python to your computer from the official website via the following link: https://www.python.org/downloads/ Then click the Download button shown in the image (Figure 5) under the heading Download the latest version.
Once the download is complete, open the installer file.
» Note: If you’re installing Python on Windows, select “Add Python to PATH” before continuing with the installation, usually shown on the first screen. This helps you run Python from the Command Prompt later.
Then follow the on-screen steps to finish installing Python on your device.

	2 – Downloading and Installing PyCharm

	[image: Figure 6: Downloading PyCharm]

	Figure 6: Downloading PyCharm

	You can download the free PyCharm Community edition from the official JetBrains website via the link: https://www.jetbrains.com/pycharm/download/ Then, choose your operating system, and select the version that matches your computer’s specifications before clicking the Download button shown in the image (Figure 6) under the Community heading. Once the download is complete, open the file to install the program on your device.

	2.1 – An Exploratory Tour of PyCharm

	2.1.i – What is PyCharm?

	PyCharm is a program used to write, debug, and run Python code. It belongs to a category of programs known as IDE, which stands for Integrated Development Environment.

	PyCharm offers a wide range of tools and features, such as intelligent code recognition, automatic code completion, and others. It is highly efficient while remaining easy to use. One of its standout advantages is the ability to set up virtual environments with a single click, without the need to configure them manually through code. Additionally, PyCharm is available in a free edition called PyCharm Community, which is the version we will use throughout this book to write and execute Python code.

	2.1.ii – The PyCharm Interface

	» Note: A new version of PyCharm may be released after I complete this book, which could cause slight differences between the screenshots included below and the interface of the newer version. However, these differences do not affect the fundamentals we are covering in this explanation.

	[image: Figure 7: Creating a Project in PyCharm]

	Figure 7: Creating a Project in PyCharm

	After launching PyCharm, the screen shown in (Figure 7) appears. From this interface, you can create a new project by clicking the New Project button indicated by ➀, or open an existing project—if available—such as the one marked by ➁.

	[image: Figure 8: Setting the Project Environment in PyCharm]

	Figure 8: Setting the Project Environment in PyCharm

	After clicking the New Project button to create a new project, the screen shown in (Figure 8) appears. From this screen, you can:

	
		Choose a name for the project you want to create by replacing the blue-highlighted text indicated by ➀ with your desired name.

		Select a virtual environment for the project by the field marked as ➁ (in this book, we will always use a virtual environment by selecting Virtualenv or venv).

		Specify the Python version to be used in the project through the field indicated by ➂ (we will use the latest version of Python that we downloaded earlier).

	Finally, click the Create button marked as ➃ to create the new project.

	What is the Virtual Environment?

	This is just for your information—you do not need to fully understand it at this point. Some readers may have just decided to start learning programming through this book and might be completely unfamiliar with programming terms and tools. So, we will explain the role of Virtualenv using a simple analogy rather than a purely technical approach:
Imagine you have a smartphone with WhatsApp installed, and you want to install another app. However, for some reason, this new app cannot run on the same phone alongside WhatsApp. To solve this problem, you might think about uninstalling WhatsApp—but you need it constantly. Or you might consider buying a new phone just to install the second app—but that seems difficult and expensive!
This is where the idea of a virtual environment comes in. It allows you to create two isolated environments on the same device, so you can install each app in its isolated environment and run them on the same device as if each were installed on a separate phone. Similarly, in programming, we use virtual environments to avoid conflicts between different project packages on the same machine.

	[image: Figure 9: PyCharm Interface]

	Figure 9: PyCharm Interface

	» Note: If PyCharm opens with its new interface and you want to switch back to the classic interface used in this book, you can do so by clicking the ☰ button at the top-left corner of the program window, then selecting Settings from the menu. Next, go to Appearance & Behavior, click New UI, and uncheck the box next to Enable new UI to disable it. Finally, click OK, then Restart to reopen PyCharm with the old interface. You can return to the new interface later by repeating the same steps and re-enabling Enable new UI.

	After clicking the Create button to create the project, the main PyCharm interface appears as shown in (Figure 9). This interface can be divided into three main sections:

	
		Section ➀: Used to manage the project files.

		Section ➁: Where we write the Python code.

		Section ➂: A multi-purpose display area.

	This interface also includes a button to run the code, which we indicated in ➃… (Back to the print() function).

	2.2 – Downloading and Installing the Required Packages/Libraries

	[image: Figure 10: Installing Packages in PyCharm]

	Figure 10: Installing Packages in PyCharm

	PyCharm also stands out for its ease of downloading and installing libraries, which we will explain in more detail later in this book.
To install a specific library, click the Python Packages button at the bottom of the PyCharm interface, as shown in (Figure 10) at point ➀. Then, enter the name of the library you want to download in the field indicated by ➁, and finally click the Install Package button marked as ➂ to download and install that library.

	Below is a list of the libraries required for the second practical section of this book. You can install them now one by one, or postpone this step until after completing the first section:

	
		pygame

		matplotlib

		pandas

		pygal

		pygal_maps_world

		streamlit

		pillow

		lxml

	» Note: You can practice the first part of the book on smartphones and tablets using apps such as Replit on iPad and iPhone devices, or Dcoder on Android devices. However, for the second part of the book, you need a computer and libraries installed.

	
Chapter 1:
An Exploratory Tour in Python

	» Note 1: To learn from this book effectively and understand the exercises more easily, prepare PyCharm or a similar IDE so you can practice writing every code example presented and test running them yourself.

	1 – The print() Function

	I

	n the introduction of this book, we mentioned Python’s distinctive simplicity. In Python, we can display—meaning print—any content on the screen, whether text, numbers, or symbol, simply by using one of the commands known as functions. The function we use for this purpose is print(), where we place the content we want to display inside its parentheses.

	Here’s a simple example: If we enter the following code in the code editor of an IDE such as PyCharm or any similar program:

	print("I wrote my first code!")

	If we then run this code using the button we previously pointed out at the top of the PyCharm interface, this causes the content entered between the parentheses of the print() command to be displayed on the screen, and the result appears as follows:

	I wrote my first code!

	The meaning of this code is that we are instructing Python to display a specific piece of content on the screen using the print() command. The content we want to display is placed between the parentheses of this command, and we enclose it in double quotes " " to indicate to Python that it is textual content. In Python, text is identified by enclosing it in double quotes, and such text is referred to as a string.

	» Note 2: We can also use single quotes ' ' instead of double quotes to define string content in Python. And this usage becomes mandatory in certain cases to avoid errors. Below are some examples:

	⁕ Example 1: Using single quotation marks in the following code:

	print('I started programming!')

	serves the same role as double quotation marks. It tells Python that the content placed between these quotation marks is a string. In other words, it defines the text enclosed within them as textual content. Running this code displays the following output on the screen: I started programming!

	⁕ Example 2: However, if the text content you want to use already contains double quotes in its original form—such as the following sentence:

	He says: "Hello mom!"

	In this case, it becomes necessary to use single quotes instead of double quotes to define this string, in order to avoid errors, as shown in the example attached in the image below.

	[image: Figure 1.1: Using the single quotes to define a string, in order to avoid errors]

	Figure 1.1: Using the single quotes to define a string, in order to avoid errors

	⁕ Example 3: The same applies when the text content you want to use already contains a single quote (apostrophe) in its original wording. In this case, you do not use single quotes to define the string; instead, you use double quotes to avoid errors, as shown in the example attached in the image below.

	[image: Figure 1.2: Using double quotes to define a string, in order to avoid errors]

	Figure 1.2: Using double quotes to define a string, in order to avoid errors

	2 – Variables and Values

	Storing information in programs for various purposes is one of the most fundamental principles of programming. In Python, we can store specific pieces of information under designated names, so that we can access any of these pieces of information later by referring to the name in which it was stored.

	The stored piece of information is technically called a value, and the name under which this information is stored is called a variable. Here’s an example:

	country_name = "Egypt"

	In the line of code above, we stored the value "Egypt" in the variable country_name. If we then print this variable using the print() function, as shown in the following line of code:

	print(country_name)

	This outputs the value stored in the variable country_name, not the variable name itself. The result of running this code is:

	Egypt

	» Note 3: If we print the name of the previous variable "country_name" enclosed in quotation marks, as shown in the following line of code, Python interprets it as a string not as a variable. Running this code therefore prints the name itself:

	print('country_name')

	→ country_name

	[image: Figure 1.3: Variables and Values]

	Figure 1.3: Variables and Values

	» Note 4: If a variable name consists of two or more words, do not separate them with spaces (for example, country name). Instead, use underscore (country_name) to avoid errors:

	country name = "USA" → error

	In addition to the previously mentioned rules for naming variables, numbers can also be used in a variable name (for example, country1_name_1). However, never start a python variable name with a number, as this causes error:

	1country_name = "KSA" → error

	» Note 5: If the same variable name is repeatedly used across multiple lines of code to store different pieces of information, then printing the content of this variable in such a case displays the content of the most recent variable assigned that name. Below is an example:

	1. given_name = 'George Washington'

	2. given_name = 'Martin Luther King Jr.'

	3. print(given_name)

	In line 1 of this (code) example: We stored the value 'George Washington' in the variable given_name.
Then in line 2: We stored the value 'Martin Luther King Jr.' in another variable that also carries the name given_name.
Accordingly, printing the content of the variable given_name using the function print() in line 3 results in printing the content of the most recent variable assigned this name before the print command. Therefore the output of running this code is:

	Martin Luther King Jr.

	►► Quick Review: Up to this point, we have learned how to define strings in Python by enclosing them in double quotes or single quotes. We have also learned how to display text on the screen using the print() function, and how to store a piece of information (a value) in a name (a variable).

	3 – The Methods: .title(), .lower(), and .upper()

	In Python, there is another set of commands known as Methods. For now, you do not need to focus on these names—such as method and function—since we will cover them later in detail (and from this point onward, we will indicate the results of running the code by highlighting them).

	1. drink = "water"

	2. print(drink)

	water

	3. print(drink.upper())

	WATER

	In line 1 of this (code) example, we stored the value 'water' in the variable drink. Then, in line 2, we printed the content of this variable using the print() function. After running this code, as shown in the output of line 2—and as expected—it printed the value stored in this variable in its original form.

	As for line 3, printing the contents of the variable drink using the print() function, combined with adding the .upper() method—which converts the characters of a string to uppercase—resulted in printing the contents of this variable in uppercase letters: WATER.
These commands, whose meanings are clear, are among the features of Python, which makes it easier for programmers to remember the functions of Python commands based on their meanings, as print() and .upper().

	We can also convert the letters of strings to lowercase by using the .lower() method. And it isn’t required to use these commands inside the parentheses of the print() function as we did in the previous example; they can be used in different contexts, as we will do in the next example:

	1. name_1 = "EMMA"

	2. name_2 = name_1.lower()

	3. print(name_2)

	emma

	In line 1 of this (code) example, we stored the value 'EMMA'—written in uppercase letters—in the variable name_1.
Then, in line 2, we used the .lower() method to convert the characters of the string stored in name_1 into lowercase letters, and we stored the result in the variable name_2.
Finally, in line 3, we printed the contents of name_2 using the print() function. As we can see from the output of running this code, applying the .lower() method converted the string 'EMMA' into lowercase letters: emma.

	Another common style used for writing proper names, book titles, and similar items consists of capitalizing the first letter of each word while writing the remaining letters in lowercase. For example: John Kennedy.
In Python, we can convert text into this format by using the .title() method. Here’s an example:

	1. presidential_candidates = "donald trump, joe biden, kamala harris"

	2. print(presidential_candidates.title())

	Donald Trump, Joe Biden, Kamala Harris

	We can see from the result of running the code above that using the .title() method in line 2 has converted the text stored in the variable presidential_candidates into the required formal format.

	►► Reminder: If you encounter any difficulties as beginners starting out with this book, I encourage you to reach out to me on social media to share your questions, or contact me through my website:

	[image: Image] [image: Image] [image: Image] [image: Image] [image: Image]

	@alkhatib_ahmad1

	https://ahmad-khatib.com/en/

	

Chapter One Exercise

	The exercise for this introductory chapter is very simple. Try to unleash your imagination and write a piece of code that is at least ten lines long. You might design it so that, when executed, it prints your name and the names of your family members or friends in different letter cases. Make sure to use the following commands and symbols in your code:

	= " " ' ' print() .lower() .upper() .title()

	
Chapter 2:
Numbers and Strings and Some Basic Operations

	1 – Numbers

	1. apples = 8

	2. print(apples)

	8

	3. apples = "8"

	4. print(apples)

	8

	

	L

	ooking at the two execution results of the code shown above, the output of line 2 appears similar in form to the output of line 4, since both lines produced the result 8. However, in terms of origin, there is a significant difference between these two results. The value "8" stored in line 3 was enclosed in quotation marks, which means Python recognized it as a string.

	On the other hand, the value 8 stored in line 1 was added without quotation marks. In this case, Python recognizes it as a number, not as a string. This distinction allows various arithmetic operations to be performed on this number—such as addition, subtraction, multiplication, and division—as we will demonstrate shortly

	2 – Use Cases of the Addition Operator (+) with Numbers VS. with Strings

	It is well known that the addition operator (+) is used to add numbers in mathematics, and it works the same way in Python to add numbers.
However, it can also be used to concatenate strings, meaning it joins them together. Here are some examples:

	1. eggs = 4 + 4

	2. print(eggs)

	8

	In line 1 above: Python recognized the two numbers 4 used in this line as numeric values. Consequently, the addition operator (+) applied in this line performed a mathematical calculation, it added these two numbers and gave us the result 8, as shown when the code runs and prints the content of the variable eggs in line 2.

	

	3. first_name = "Nadia"

	4. nickname = "Nado"

	5. print(first_name + " " + nickname)

	Nadia Nado

	In line 5, we used the addition operator (+) to concatenate text strings. Specifically, we combined the string stored in the variable first_name with the string stored in the variable nickname. This resulted in placing the second string directly next to the first string, as shown in the output when the code runs.
As for the space between the quotation marks (" "), which we also concatenated in line 5, its purpose is to insert a space between the first string and the second string so that the result does not appear stuck together like NadiaNado.

	6. print(first_name + eggs) → error

	However, attempting to concatenate a string with a number—as shown in line 6, where we try to join the text stored in the variable first_name with the number stored in eggs—results in an error. This is because Python does not allow strings to be concatenated with numbers.

	» Note 6: You can think of Python code execution as similar to a person reading a book: it starts from the very first line at the top and moves downward, one line at a time. Python executes the code line by line, starting with line 1, then moving on to line 2, line 3, and so on…

	3 – The int() and str() Functions

	The int() Function:
The term int refers to the first three letters of the word integer, which means a whole number. In Python, the int() function is used to convert data into an integer type. For example, it can convert the string "5" into the integer 5.

	The str() Function:
The term str refers to the first three letters of the word string. In Python, the str() function is used to convert data into a string type. For example, it can convert the number 5 into the string "5".

	For instance, suppose we want to design an accounting program—a program that performs various calculations to determine different business results, such as total income, expenses, profits, and more. The results of these calculations are always numbers we want to display on the screen using print(), but we often need to display them in clear, readable sentences so that we can review them and distinguish one result from another.
To include these numeric results in meaningful sentences, we need to combine them with text. However, Python does not allow concatenation between numbers and strings, and attempting to do so results in an error. To avoid this problem, we can use the str() function to convert the numeric results into strings. This allows us to combine them with text and produce the clear, descriptive sentences we need.
Conversely, we may also need to perform calculations on values that are originally stored as strings. In such cases, we can use the int() function to convert these values into integers, allowing us to perform arithmetic operations on them. Here is an example:

	1. age = 34

	2. print('I am' + ' ' + str(age) + ' years old.')

	I am 34 years old.

	In line 1 of the example code above, we stored the number 34 in the variable age—a number representing someone’s age. The purpose of this example is to print that number within a text sentence. To achieve this, we used the str() function in line 2 to convert the contents of the variable age into a string. This allowed us to concatenate it with other text strings, resulting in the desired sentence, as shown in the output.

	3. price = "10"

	4. delivery = "5"

	5. total_cost = int(price) + int(delivery)

	6. print(total_cost)

	15

	Then, in lines 3 and 4, we stored a string in each of the variables price and delivery. The purpose of this example is to perform a mathematical operation on these two variables. Therefore, in line 5, we used the int() function to convert the contents of both price and delivery into integers (numbers). This conversion allowed us to perform a calculation on the two variables and obtain their sum, as shown in the output.

	» Note 7: In line 2 of the last example, we added a space between the strings in two different ways: once by using ' '—a method we encountered earlier—and another time by including the space within the string itself at the beginning, as in
' years old'. You can use whichever method you prefer.

	4 – Number Types in Python
And Some Basic Arithmetic Operations

	Numbers in Python are divided into several types, including:

	
		Integer: A number without a decimal point, whether positive, negative, or zero. Examples: 6, -10, 0, and so on.

		Float: A number that contains a decimal point, whether positive, negative, or zero. Examples: 6.0, -4.123, 0.4356, 0.0, and so on.

	In Python, we can perform various arithmetic operations on these numbers, such as:
- Addition (+)
- Subtraction (-)
- Multiplication (*)
- Division (/)
- And exponentiation (**). The following example demonstrates these operations, followed by an explanation:

	1. a = 2

	2. b = 5

	3. c = 0.5

	4. print(a + b)

	7

	5. print(b - a)

	3

	6. print(a / c)

	4.0

	7. print(b ** a)

	25

	8. print((a + b) * b)

	35

	In the example above, we stored an integer in each of the variables a and b in lines 1 and 2, and we stored a float in the variable c in line 3. After that, we performed several basic arithmetic operations on these values: addition in line 4, subtraction in line 5, division in line 6, exponentiation in line 7, and finally a compound arithmetic operation in line 8. The expected results were produced, as shown in the output when the code was executed.

	Your exercise in this section is to perform some additional arithmetic operations and test their outputs yourself, while keeping the following two notes in mind:

	
		Python follows the same arithmetic conventions used in mathematics. For example, in line 8:
print((a + b) * b), the addition operation is placed inside parentheses to indicate that it should be performed before the multiplication. The same rule applies to all other arithmetic operations in Python, which should be handled according to standard mathematical conventions.

		While practicing, you may encounter some arithmetic operations that produce weird results. For example, running the code print(3.1 + 3.2) returns 6.300000000000001 instead of 6.3. This behavior is related to how the programming language handles floating-point numbers, and it is not addressed here, so you should not focus on these cases.

	5 – Commands Related to Working with Strings

	5.1 – Using Comma (,) Inside the print() Function to Combine Strings and Separate them with a Space

	Inside the print() function, we can use a comma (,) to separate inputs inside its parentheses. These inputs can be variables that store strings or the strings themselves. When we use commas, Python prints the strings next to each other and automatically adds a space between them. The example below shows both cases:

	1. first_name = "Dwayne"

	2. last_name = "Johnson"

	3. print(first_name, last_name)

	Dwayne Johnson

	Using the comma (,) inside the print() function in line 3 of the example above, between the variables first_name and last_name, causes Python to print the two strings next to each other with a space between them, as shown in the output.

	4. print("Levi’s Stadium", '2025', 'big event!')

	Levi’s Stadium 2025 big event!

	Using the comma (,) inside the print() function in line 4 of this example, placed directly between the text strings, causes Python to print the strings next to each other with a space between them, as shown in the output.

	5.2 – The Tab Space (\t), and Moving to a New Line (\n)

	Start Space:
It is customary to add blank spaces at the beginning of paragraphs to separate them from one another. This space is usually the same as pressing the Space key several times at the start of the first line.
In Python, instead of pressing the Space key repeatedly, we can add this Start Space directly into a string by using the (\t). Here is an example:

	1. print('Hello')

	Hello

	2. print('\tHello')

	 Hello

	Unlike the usual output of line 1 above, using the \t symbol at the beginning of the string "\tHello" in line 2 resulted in adding a start space before this string, as shown in the output.

	Starting a New Line:
To print text on multiple lines, one obvious approach is to use the print() function repeatedly—calling it each time we want to start a new line. However, this method can make the code unnecessarily long.
To avoid this, Python allows us to use the (\n) within a string to move to a new line. The following examples demonstrate this technique:

	⁕ Example 1: A sample showing repeated use of the print() function to move to a new line:

	1. print("Hello...")

	2. print("Where are you?!")

	3. print("Are you there?")

Hello...

Where are you?!

Are you there?

	⁕ Example 2: A sample of using the (\n) to move to a new line:

	4. print("Hello...\nWhere are you?!\nAre you there?")

 Hello...

 Where are you?!

 Are you there?

	⁕ Example 3: A sample demonstrating the use of both characters (\t) and (\n) together in the same string:

	5. print('\tHello\nWhat is your name?')

	 Hello
What is your name?

	5.3 – Defining Strings Using Triple Quotes
(""" """)

	In Python, we can also define a string using the triple-quote method. This means using three double quotes """string""" instead of one "string", or three single quotes '''string''' instead of one 'string' to define a string. This triple-quote method offers several practical benefits, including:

	
		Avoiding errors:
We previously mentioned that when defining a string, you need to be careful if the string itself contains a double quote (") or a single quote (') to prevent errors. But what if the string itself contains both a double quote and a single quote at the same time? This is where the triple-quote method becomes useful, allowing you to define such a string without causing any errors. Here’s an example:

	1. print("""I'm not sure, is it for "Bob"?""")

	I'm not sure, is it for "Bob"?

	2. print("I'm not sure, is it for "Bob"?") → error

	3. print('I'm not sure, is it for "Bob"?') → error

	In line 1 of the example above, the string contains both the characters (") and (') within its structure. Therefore, we used the triple-quoted method to define this string in order to avoid errors—specifically, we used six double quotes in our case here, though we could also use six single quotes to define this string.
But using only double quotes or only single quotes in this situation, as we did in lines 2 and 3, lead to errors.

	
		Breaking to a New Line:
Using the triple-quoted string approach also allows us to insert line breaks simply by moving to a new line within the string itself by clicking the Enter key, without needing to use the (\n) character. Below are two examples that demonstrate this:

	⁕ Example 1:

	1. print("""Hello

	2. How are you?

	3. I miss you!""")

	Hello
How are you?
I miss you!

	⁕ Example 2:

	1. message = """Hello

	2. How are you?

	3. I miss you!"""

	4. print(message)

	Hello
How areyou?
I miss you!

	» Note 8: If we want to use the triple-quoted string method to define a string that begins or ends with a double-quote or a single-quote character, then in this case we use the triple-quoted style that differs from that symbol to avoid errors. Here is an example:

	1. print('''C'est pour moi et c'est pour "Bob"''')

	C'est pour moi et c'est pour "Bob"

	In line 1 of this example, we want to use the triple quotes method to define a string that ends with a double-quote character (bob"). To avoid the error, we used triple single quotes instead of triple double quotes. Conversely, if a string starts or ends with a single-quote character, we use triple double quotes to prevent the error.

	5.4 – Removing Spaces from String Edges: .strip(), .rstrip(), .lstrip()

	"Elvis Presley" " Elvis Presley" "Elvis Presley "
" Elvis Presley "

	Above, we have four string examples, each containing the name Elvis Presley. Although these examples may appear similar in meaning, Python treats them as different strings. This is because the first example, "Elvis Presley", does not include any spaces before or after the text, while the other examples contain spaces in different positions. As a result, Python considers these four strings to be distinct and not identical.

	The .strip() Method:
The .strip() method is used to eliminate spaces from both ends of a string, the left and the right. Here is an example:

	1. name_1 = " Michael Jackson "

	2. print(name_1.strip())

	Michael Jackson

	We can see from the result of running this code that calling the .strip() method on the variable name_1 in line 2 of this example removed the spaces from both ends of the string stored in that variable.

	Now, let’s look at an analogy to better understand the practical use of this concept. Imagine a person named Mr. X who works as a warehouse manager at a company. He uses a computer program to manage the warehouse inventory. This program includes a special field where Mr. X enters the names of supplier companies.
If Mr. X wants to receive a shipment from a company called "UKGP", he types the company name into that field. However, what if he accidentally presses the spacebar before or after typing the name? This could result in entries such as "UKGP " or
" UKGP", or similar variations. As explained earlier, Python treats these variations as different strings, even though they look almost the same. Therefore, they are not identical to the actual company name "UKGP".
This difference can cause errors in the warehouse data. This is where the .strip() method becomes useful. By adding this method to the program’s input field (as we will explore later), the programmer can remove accidental extra spaces from the beginning and end of company names before they are stored in the system, preventing the problem described above.

	The .rstrip() Method:
The .rstrip() method is used to remove spaces from the right end of a string. The letter r in .rstrip() stands for right, which makes these methods easy to remember:

	3. name_2 = " Clint Eastwood "

	4. print(name_2.rstrip())

	 Clint Eastwood

	Calling the .rstrip() method on the variable name_2 in line 4 of this example removed the spaces from the right end of the string stored in this variable, without removing the spaces from its left end.

	The .lstrip() method:
The .lstrip() method is used to remove spaces from the left end of a string:

	5. name_3 = " Robert De Niro "

	6. print(name_3.lstrip())

	Robert De Niro .

	5.5 – Removing Text from String Boundaries: .removeprefix(), .removesuffix()

	The .removeprefix() Method:
The .removeprefix() method is used to remove a specific prefix—a sequence of characters—from the beginning of a string. The prefix to be removed is passed inside the method’s parentheses, and the removal occurs only if the string actually starts with that prefix.
If the string does not begin with the specified prefix, the original string remains unchanged:

	1. title_1 = "Mr. Sherlock Holmes"

	2. print(title_1.removeprefix("Mr. "))

	Sherlock Holmes

	In this example, calling the .removeprefix() method on the variable title_1 in line 2 and passing the prefix "Mr. " inside its parentheses removed that prefix from the beginning of the string stored in this variable, as shown in the program output above.
In our example, the prefix was removed because the string starts with the exact sequence of characters "Mr. " provided inside the method parentheses. If the string does not begin with the same specified prefix, it is returned unchanged, without any modification.

	The .removesuffix() Method:
The .removesuffix() method works in a similar way, but instead removes a specific suffix from the end of a string, only if that suffix exists.

	3. filename = "movie_trailer.mp4"

	4. print(filename.removesuffix(".mp4"))

	movie_trailer

	In this example, calling the .removesuffix() method on the variable filename in line 4 removed the suffix ".mp4" from the end of the string stored in this variable, as shown in the program output above.
If the string does not end with this suffix, Python would return the original string unchanged.

	5.6 – Using the Backslash (\) to Escape Special Characters or Split Long Code Lines

	Escaping Special Characters:
Special characters in Python are characters that perform specific functions when used, such as the double quotes (" ") that define a string, or the (\n) that moves the text to a new line, and so on. However, there are cases where we need to disable these functions. For example, we might want to print (\n) as plain text in a sentence without triggering a line break. This is where the backslash (\) comes into play: by adding it before a special character, we escape it—turning it into a regular character that does not execute its special function. This allows us to print these symbols as ordinary text without causing errors in the code or altering the intended output. Here’s an example:

	1. print('C\'est bon')

	C'est bon

	In line 1 of this example, we defined a string using single quotes, and the string itself contains a single quote. To prevent errors—which occur when using single quotes to define a string that already contains one—we added a backslash (\) before the single quote inside the string, converting it into a regular character.

	2. print('\\ backslash')

	\ backslash

	However, the backslash itself is a special character in Python because it serves the function of escaping other special characters. To print a backslash as plain text in line 2, we added another backslash before it, converting it into a regular character, which allowed us to print it in the output.

	3. print('\\t is a special character')

	\t is a special character

	And in line 3 above, our goal is to print the (\t) as plain text without triggering its special function of adding a tab space. By adding a backslash before it, we escaped it and printed it as ordinary text.

	The examples above represent only a few cases. So always remember to use the backslash when you need to escape special characters to produce the desired output.

	Splitting a Long Code Line into Multiple Lines:
As you progress in programming and software development, you may encounter plenty of situations where a single line of code becomes very long, making it harder to read and follow visually. Python makes this easy to handle: We can use the backslash (\) to split a long line of code into multiple shorter lines. Simply add a backslash at the end of a line to continue it in the next line. Here’s an example:

	1. a = ("Python has been an important part of Google since the beginning, \

	2. and remains so as the system grows and evolves. Today dozens of Google \

	3. engineers use Python, and we're looking for more people with skills in \

	4. this language. Peter Norvig")

	In this example, we want to define a relatively long string—about the length of a paragraph. Instead of writing it all in one long line, we split it into several shorter lines by using the backslash (\) at the end of each line that should continue onto the next. This allows Python to treat these multiple lines as a single line of code, with the backslash acting as a connector between the parts.

	This technique is not limited to strings; it can also be used to split other lines of code.

	6 – Adding Comments to Code (#)

	Comments are notes that programmers add to their code to explain its parts. In Python, we create a comment by using the (#) character, followed by the explanation. Comments do not affect the code logic, and do not appear in the program’s output when it runs.

	Comments are an essential part of programming, especially in large programs that can consist of thousands of lines of code. Their importance becomes clear when a programmer needs to debug a code they wrote a long time ago. Without comments, it can be extremely difficult to remember what each part of the code does, to identify the source of the problem.

	Beyond debugging, comments have several other important roles:

	
		They simplify program updates.

		They help create a collaborative work environment, allowing one developer to explain their code so colleagues can understand it.

		They are used for code documentation, recording details such as updates, dates, issues encountered, and solutions applied.

	Here is a simple example:

	1. m = 1000 #weight is grams

	2. p = 5 #price in USD

	3. print(str(m), str(p)) #grams, USD

	1000 5

	We used the (#) in line 1 of this example to add an explanation about the function of this line of code. We did the same in lines 2 and 3 to provide an explanation about each of them. As we can see from the result of running this code, adding these comments did not affect the final output logic.

Chapter Two Exercise

	In Python, we can easily print the text shown in the image below by using the triple-quote (''' ''') to define the string, and the backslash (\) to escape special characters.

	[image: Chapter Two Exercise]

	But the goal of this exercise is to practice what you have learned in this chapter. Therefore, without using the triple-quote method, try writing code—before looking at the sample solution on the next page—that, when run, prints text identical to the one shown in the image above.

	
Solution

	1. print("\tPython \"quotes\":\n\

	2. Coding like poetry should be short and concise. - Santosh Kalwar\n\

	3. First, solve the problem. Then, write the code. - John Johnson\n\

	4. Make it work, make it right, make it fast. - Kent Beck\n\

	5. \\t \\n\n\

	6. Python\t\\\n\

	7. Python.")

	
		We used double quotes (" ") to define the full text string.

		We also used the backslash (\) in several places within the text to escape special characters.

		The (\n) character was used whenever we wanted to move to a new line.

		Additionally, we placed a backslash (\) at the end of code lines to split into multiple lines.

	►► To conclude, let us repeat: Programming is meant to simplify complex tasks, not make them more complicated. In this exercise, the challenge is intentional, and its purpose is purely for practice and training.

	
Chapter 3:
Lists and Loops

	[image: Do you know about Minecraft?]

	Do you know about Minecraft?

	M

	inecraft is a very popular game that began development in 2009 by the Swedish developer Markus Persson.
He founded his game development company, Mojang, and became widely known by the nickname Notch.
On September 15, 2014, the technology giant Microsoft acquired Mojang Studio and the game Minecraft for an astonishing $2.5 billion.
And who knows? Maybe one of you will develop a game after learning programming and become a famous and successful developer—just like Notch.

	1 – Introduction to Lists

	We already know that we can store a piece of information—called a value—in a variable, allowing us to access it whenever needed by referring to that variable.

	However, what we have learned so far is that a variable can store only one piece of information. But in many situations, this is not sufficient. For example, we may need to store the names of all European countries in a single variable, while still being able to access each name individually.

	This is where lists come into play in Python. A list is a data container that allows us to store multiple items—meaning multiple values—in a specific order. Each item can be accessed individually by its position.

	Defining a List:

	In Python, a list is defined using square brackets [] with the elements inside separated by commas (,). Here is an example of a list assigned to the variable food:

	1. food = ["Bread", "Potato", "Tomato", "Cucumber", "Salt", "Olive oil"]

	1.1 – List Elements Ordering, and Element Code

	List Elements Ordering:
In Python, list elements are stored according to their original sequence—that is, in the same order in which they are entered. The first element in the list is referenced by the index number 0 (starting the numbering at zero is common in programming languages). The next element is referenced by index 1, and so on, with the remaining elements assigned ascending sequential indices until the end of the list, as shown in the following conceptual example:

	1. food = ["Bread0", "Potato1", "Tomato2", "Cucumber3", "Salt4", "Olive oil5"]

	Element Code:
This refers to the code used to access a specific element within a list. It consists of the name of the list that contains the desired element, followed by square brackets [] enclosing the index number of that element. Here’s an example:

	1. food = ["Bread0", "Potato1", "Tomato2", "Cucumber3", "Salt4", "Olive oil5"]

	In line 1 above, we have a list named food that contains a collection of items. The purpose of this example is to print the second element of this list, which is the string "Potato".

	2. print(food[1])

	Potato

	Accordingly, we called the print() function in line 2 and passed, within its parentheses, the code for the element we want to print. This code consists of the name of the list that contains this element, which is food, followed by square brackets in which we enter the index number of the required element, in our case [1], the index of the second element "Potato". As we can see from the result of running this code, the desired element from the list was successfully printed.

	It is worth noting that the form list_name[index], which we are using to access a specific element of a list, is formally referred to as (subscription) in Python. However, to keep the explanation smooth and accessible for beginners, we are referring to it as (element code).

	Reverse Indexing of List Elements:
In addition to the ascending sequential indexing of list elements—which we explained earlier—Python also supports reverse sequential indexing. In this system, the last element of the list is referenced by the index -1, the element before it by -2, and so on, with the rest of the elements being referenced using decreasing negative indices all the way back to the start of the list.

	As for the practical uses of this reverse indexing, when working with very large lists containing millions of elements, accessing the last elements can become cumbersome. This difficulty arises either from the challenge of determining the exact positive index of the desired elements due to the list’s enormous size, or from the sheer length of those indices—such as food[1535476]—which unnecessarily inflates the overall size of the code. However, using reverse indexing in such cases allows us to access the last element of the list—regardless of its size—simply by using the index -1, the second-to-last element with -2, and so forth. Here is an example:

	1. food = ["Bread-6", "Potato-5", "Tomato-4", "Cucumber-3", "Salt-2", "Olive oil-1"]

	2. print(food[0].upper() + " " + food[-2].lower())

	BREAD salt

	We called the function print() in line 2 of this example to display the first and the second-to-last elements of the list food. We accessed each of these elements using its index code—once by using the ascending indexing for the list elements food[0], and another time by using the reverse indexing food[-2]. In Python, we can use either of these two indexing methods to access the desired element.
The reason these two elements appear in different letter cases in the output is that we called the method .upper() on one of them and the method .lower() on the other in line 2.

	1.2 – Manipulating Lists

	To explain how to modify lists in a clear and practical way, this section provides a hypothetical example of a programmer who wants to design a program for a hotel to manage guests (Note: Up to this point in the book, we have not yet covered all the fundamentals required to design a complete and ideal program. However, we present this example for the sake of practical illustration).

	1.2.i – Adding Elements to List

	1.2.i.a – Appending a New Element at the End of the List Using the .append() Method

	1. hotel_guests = ["Adam", "Sally", "Dana"]

	In line 1 above, we have a list that contains the names of the hotel’s current guests, stored in the variable hotel_guests. If a new guest checks into the hotel, the programmer can add their name to this list using the .append() method, which is used in Python to add a new element to the end of a list.

	Here’s how we can add a new element to this list when a new guest named "Dylan" checks in:

	2. hotel_guests.append("Dylan")

	3. print(hotel_guests)

	['Adam', 'Sally', 'Dana', 'Dylan']

	To add the element "Dylan" to the list, we called the .append() method on the guest list hotel_guests in line 2 and passed the element we want to add inside its parentheses. As we can see from the output after printing the guest list in line 3, the new element has been successfully added to the end of the list.

	1.2.i.b – Adding a New Element at a Specific Order in a List Using the .insert() Method

	The programmer wants to store the names of hotel guests in the list based on their check-in dates, arranged from the earliest to the latest.
If a guest’s name was accidentally omitted, the programmer can place it in the correct position using the .insert() method.

	In Python, the .insert() method is used to add a new element to a list at a specific position (index).

	In the example below, the guest named "Daniel" checked in immediately after "Sally", but his name was missed when the list was first created. Using the .insert() method, we can add "Daniel" to the list at the correct position:

	hotel_guests = ["Adam0", "Sally1", "Dana2", "Dylan3"]

	Since we want to add the element "Daniel" to the guest list immediately after the element "Sally" having the index 1 as shown above, we therefore need to insert it at the position of the element with the index number 2.

	4. hotel_guests.insert(2, "Daniel")

	To add the element "Daniel" in its desired position, we called the .insert() method on the hotel_guests list in line 4 above. Inside its parentheses, we passed the index number where we wanted to insert this element, which is 2, followed by a comma (,). After the comma, we entered the element to be added to this list, which is "Daniel". As we can see from the result of running the code below—after printing the guest list in line 5—the element has been successfully added to the list at the specified position.

	5. print(hotel_guests)

	['Adam', 'Sally', 'Daniel', 'Dana', 'Dylan']

	1.2.ii – Removing Elements from a List

	1.2.ii.a – Removing a Specific Element by its Value Using the .remove() Method

	A guest’s name is removed from the hotel guest list when they check out. If someone decides to leave, the programmer can delete their name from the list using the .remove() method, which is used in Python to remove a specific element from a list based on its value.
Here’s an example of how to remove the guest named "Dana" from the list if she decides to leave the hotel:

	6. hotel_guests.remove("Dana")

	7. print(hotel_guests)

	['Adam', 'Sally', 'Daniel', 'Dylan']

	In line 6, we called the .remove() method on the hotel_guests list and passed the value of the element we want to delete, which is "Dana". As we can see from the output after printing the list in line 7, that element has been successfully removed.

	1.2.ii.b – Removing a Specific Element by Its Index Using the keyword del

	Python also provides a set of commands known as keywords, and one of these keywords is del, which we will discuss here. However, as always, we don’t want to overwhelm you with terminology—such as keyword, function, or method—our focus is on understanding what these commands do.

	The del keyword in Python can be used to remove an element from a list based on its position (index). You can think of del as representing the first three letters of the word delete.

	Here’s an example of how to delete the first element from the guest list if that guest checks out:

	hotel_guests = ['Adam0', 'Sally1', 'Daniel2', 'Dylan3']

	8. del hotel_guests[0]

	9. print(hotel_guests)

	['Sally', 'Daniel', 'Dylan']

	In line 8, we start with the keyword del, followed by a space and then the code for the element we want to delete. This tells Python to remove the element at that index using del. As shown in the output after printing the list in line 9, the first element has been successfully removed.

	1.2.ii.c – Removing a Specific Element from the List and Returning It Using the .pop() Method

	The .pop() method in Python is used to remove the last element from a list, and it returns that element so we can store it in a variable for later access if needed. You can think of the word pop as pop-out.

	Returning to our hotel example, here’s how we can use the .pop() method to remove the last guest from the list of hotel guests and store that guest in a variable as a former guest:

	10. guest = hotel_guests.pop()

	11. print(hotel_guests)

	['Sally', 'Daniel']

	12. print(guest)

	Dylan

	In line 10, we called the .pop() method on the hotel_guests list to remove its last element, and we stored the returned value of this operation in the variable guest, because—as mentioned—the .pop() method returns the removed element, allowing us to save it in a variable. As we can see from the output of printing the guest list in line 11, the last element has been removed, and it was stored in the variable guest, as shown by its output in line 12.

	The .pop() method can also be used to remove and return a specific element from the list by passing the index of that element inside its parentheses, as in the following example:

	1. name_list = ['William0', 'Elizabeth1', 'George2', 'Victoria3']

	2. name = name_list.pop(2)

	3. print(name_list)

	['William', 'Elizabeth', 'Victoria']

	4. print(name)

	George

	1.3 – Modifying a Specific List Element by Its Index

	In Python, we can modify a specific element in a list simply by referring to its index and assigning it a new value as shown in the following example:

	1. name_list = ['Mia0', 'Eva1', 'Sam2']

	2. name_list[2] = 'Paula'

	3. print(name_list)

	['Mia', 'Eva', 'Paula']

	To modify the third element of the list name_list defined in line 1, we referred to the index of that element in line 2 and assigned it a new value, 'Paula'. After running the code and printing the list name_list in line 3, we can see that the third element was successfully changed from 'Sam' to 'Paula'.

	1.4 – Rearranging List Elements

	1.4.i – Rearranging List Elements in Ascending or Descending Order Using the .sort() Method

	Rearranging List Elements in Ascending Order:
The .sort() method is used to rearrange the elements of a list in ascending order. For text-based lists, this means sorting alphabetically according to the first character of each element. For numeric lists, it means sorting from the smallest to the largest value. This operation permanently changes the order of the list. Below are two examples:

	⁕ Example 1:

	1. names = ["Tom Hanks", "Leonardo DiCaprio", "Brad Pitt", "Morgan Freeman"]

	2. names.sort()

	3. print(names)

	['Brad Pitt', 'Leonardo DiCaprio', 'Morgan Freeman', 'Tom Hanks']

	Calling the .sort() method on the names list in line 2 rearranged its elements in ascending order, based on the alphabetical order of the first letter of each item.

	⁕ Example 2:

	1. ages = [7, 39, 20, 52]

	2. ages.sort()

	3. print(ages)

	[7, 20, 39, 52]

	Calling the .sort() method on the numeric list ages in line 2 rearranged its elements in ascending order, from the smallest to the largest.

	Rearranging List Elements in Descending Order:
In Python, you can also use the .sort() method to rearrange list elements in descending order—again, permanently—by adding(reverse = True) inside the parentheses of this method. Make sure the (True) starts with a capital T to avoid an error. Here’s an example:

	1. names = ["Oprah Winfrey", "Denzel Washington", "Scarlett Johansson", "Will Smith"]

	2. ages = [7, 39, 20, 52]

	3. names.sort(reverse = True)

	4. ages.sort(reverse = True)

	5. print(names)

	6. print(ages)

	['Will Smith', 'Scarlett Johansson', 'Oprah Winfrey', 'Denzel Washington']
[52, 39, 20, 7]

	1.4.ii – Creating a Copy of a List Sorted in Ascending or Descending Order Using the sorted() Function

	We previously mentioned that calling the .sort() method on a list permanently rearranges its elements. However, there are many cases where we want a sorted copy of a list—either in ascending or descending order—without changing the original list, because its order may be important.

	This is where the sorted() function is useful. In Python, sorted() creates a new list that is sorted in ascending order from the original list, while leaving the original list unchanged. You can also create a descending-sorted copy by adding (reverse=True) inside the parentheses. Below are two examples illustrating this:

	⁕ Example 1:

	1. names = ["Jennifer Aniston", "Robert Downey Jr.", "Beyoncé"]

	2. sorted_names = sorted(names)

	3. print(sorted_names)

	['Beyoncé', 'Jennifer Aniston', 'Robert Downey Jr.']

	4. print(names)

	['Jennifer Aniston', 'Robert Downey Jr.', 'Beyoncé']

	In line 1 above, we have a list named names that contains some string elements. Our goal in this example is to create an ascending-sorted copy of this list, ensuring that the original order remains unchanged. To achieve this, we called the sorted() function in line 2 and passed the name of the list we want to sort—names—inside its parentheses. We then stored the result (that is, the sorted copy returned by this function) in the variable sorted_names. As we can see from the output of printing sorted_names in line 3, we obtained an ascending-sorted copy of the names list, without affecting its original order, as shown by the output of printing names in line 4.

	⁕ Example 2:

	1. ages = [7, 39, 20, 52]

	2. sorted_ages = sorted(ages, reverse = True)

	3. print(sorted_ages)

	[52, 39, 20, 7]

	4. print(ages)

	[7, 39, 20, 52]

	In line 1 of this example, we have a list named ages that contains some numeric elements. Our goal here is to obtain a descending-sorted copy of this list, while keeping its original order intact. To do this, we called the sorted() function in line 2, passed the name of the list—ages—inside its parentheses, followed by a comma, and then added reverse=True to get a descending-sorted copy.

	1.4.iii – Reversing the Order of List Elements Using the .reverse() Method

	Reversing the order of a list means rearranging its elements in the opposite sequence—from right to left—regardless of whether the elements are strings or numbers.

	For example, if the list is:

	["Emily", "Daniel", "Michael", "Olivia", "Anthony"]

	Its reversed order is:

	['Anthony', 'Olivia', 'Michael', 'Daniel', 'Emily']

	And if the list is:

	[1, 14, 50, 7]

	Its reversed order is:

	[7, 50, 14, 1]

	In Python, we can reverse the order of list elements using the .reverse() method.

	For instance, suppose we have a list of employees in a company, arranged according to their absence from work—from the most absent to the least absent—and we want to obtain a list arranged from the least absent to the most absent. We can achieve this by reversing the order of the list elements using the .reverse() method, as shown in the following example:

	1. absence_list = ["Joshua", "Madison", "Ethan", "Avery"]

	2. absence_list.reverse()

	3. print(absence_list)

	['Avery', 'Ethan', 'Madison', 'Joshua']

	It is important to note that calling the .reverse() method on a list permanently reverses its order. However, if we need to restore the original order, we can simply call .reverse() again to invert the sequence back.

	1.4.iv – Ordering Criteria

	Uppercase Letters Precede Lowercase Letters in Sorting:
In Python, uppercase letters are considered to come before lowercase letters when sorting strings. For example, the uppercase letter "A" is ordered before the lowercase letter "a".
This also means that an uppercase letter such as "B", even though it comes after "a" in the regular alphabet, still comes before "a" in Python’s sorting order because it is uppercase.

	1. names = ['ahmad', 'hani', 'Karim', 'Dany', 'Xavi', 'Soha']

	2. names.sort()

	3. print(names)

	['Dany', 'Karim', 'Soha', 'Xavi', 'ahmad', 'hani']

	From the result of running the code above, we can see that calling the .sort() method on the string list names in line 2 rearranged the elements so that all items starting with an uppercase letter appear first, followed by the items starting with a lowercase letter.

	Inability to Sort Mixed Lists in Ascending or Descending Order:
By mixed lists, we mean lists that contain both strings and numbers as elements, such as ["LG", 4, "hp", 1]. In Python, we cannot sort such lists in ascending or descending order because Python cannot compare strings and numbers with each other during sorting.
However, we can still reverse the order of a mixed list using the .reverse() method. This is because .reverse() simply rearranges the elements based on their index order, rather than attempting to compare them alphabetically or numerically.

	2 – The for Loop

	When working with very large lists—for example, a list of ticket holders for a Champions League Final at Camp Nou in Barcelona, Spain, which can hold over 99,000 spectators—let’s consider a list named ticket_holders containing 99,000 elements. In such cases, managing such a large dataset efficiently becomes essential. Imagine trying to send a text message to every ticket holder in that list. If we try to access each element individually using its index, like ticket_holders[0] for the first person, ticket_holders[1] for the second, and so on, it could take so long that the next year’s Champions League Final might arrive before we finish!
Fortunately, Python provides a simple and powerful solution: the for loop.

	The for loop allows us to perform a specific action on each element of a data container—such as a list—one element at a time, using just a few lines of code. This makes it easy to work with lists, even if they contain millions of elements.

	Here is an example followed by a detailed explanation, Do not worry if certain parts seem unclear at first— Keep reading to the end—everything becomes clear step by step:

	1. ticket_holders = ["Beckham", "Ronaldinho", "Klose"]

	2. for each_holder in ticket_holders:

	3. print(each_holder)

	Bckham
Ronaldinho
Klose

	In line 1 above, we have a list that contains several elements.
In this example, our goal is to print each element of the list one by one. Instead of repeatedly and manually writing a separate print() statement for each element, we can use a single for loop to execute the print() command on all the elements in the list, one after another.

	Using a for loop is actually very simple, even if it seems a little confusing at first. To understand it fully, read the following explanation carefully all the way through. We will begin with a detailed explanation presented in Figure 3.1 on how to write a for loop:

	[image: Figure 3.1: for loop syntax]

	Figure 3.1: for loop syntax

	We can read the line 2 above as instructing Python to do the following:
(for) each element that we named (each_holder) in the list (ticket_holders), execute the following command (:)

	3. print(each_holder)

	After pressing the Enter key to move from line 2 to line 3, we notice that the line becomes indented, meaning that an empty space appears at the beginning of the line, as shown in line 3 above. In Python, indentation indicates that a line belongs to a previous statement—in this case, the for loop in line 2 that ends with a colon (:).

	Now let’s examine step by step what happens when this code runs:

	
		In line 2—the for loop line—: Python starts executing the loop. It looks at the list ticket_holders on which we applied the loop, and takes its first item (in our case, "Beckham"). Python then assigns this value to the variable we named each_holder, which acts like a temporary label holding the current item, so after this step we have:

	each_holder = " Beckham"

	Then Python moves after that to the line that belongs to the loop—the loop body—line 3.

	
		In line 3: Python executes the loop body, which is in our case:

	print(each_holder)

	Since earlier in line 2 the first element of the list was assigned to the variable each_holder, this prints "Beckham". Then Python returns to line 2 to execute the next iterations of the for loop.

	Second Iteration:

	
		In line 2: Python moves to the next element of the list—the second element—and assigns it to the variable we named each_holder, so this time we get:

	each_holder = "Ronaldinho"

	Then Python moves again to the loop body, line 3.

	
		In line 3: Python executes the loop body:

	print(each_holder)

	This prints "Ronaldinho". And Python returns again to line 2 to execute the next iterations of the for loop.

	This process repeats for every element in the list, one by one; Once all elements in the list have been assigned to each_holder and printed, the for loop ends automatically, and Python continues executing any remaining code after the loop.

	⁕ Another Example:

	In line 1 of the code below, we have a list that contains some elements. Our goal in this example is to use the for loop to print the following sentence: "this is to confirm that your recent ticket has been resolved", alongside each element in that list. Here’s how we do it:

	1. clients = ["Antoine", "Richard", "Ramzi"]

	2. message = ", this is to confirm that your recent ticket has been resolved."

	3. for client in clients:

	4. print("Dear " + client + message)

	Dear Antoine, this is to confirm that your recent ticket has been resolved.
Dear Richard, this is to confirm that your recent ticket has been resolved.
Dear Ramzi, this is to confirm that your recent ticket has been resolved.

	What happens when this code runs is identical in terms of repetition mechanism to what happened in the previous example. Python executes the first iteration of the for loop in line 3, storing the first element of the clients list—the one we applied the loop to—into the variable we named client. At that point, we get:

	client = "Antoine"

	Then, Python moves to the loop body—line 4
print("Dear " + client + message)—and executes it, resulting in printing the first element of this list within the required sentence. And so on, this process repeats sequentially for all elements in the list, one element after another, until we obtain the set of sentences shown in the output above.

	5. print(client)

	Ramzi

	Question?

	We moved down to line 5, as shown above, and removed the indentation at the beginning of the line so that it is no longer part of the previous loop. Then we called the print() function to display the value of the variable client—the temporary variable we used in the loop—As shown in the output above, the result is Ramzi.
Now, here is a question for you. Try to answer it yourself before reading the explanation on the next page:
Why did printing the variable client in line 5 return the value Ramzi?

	

	Answer:

	After executing the for loop on the clients list in line 3, the last element that Python assigned to the variable we named client during the iteration process was the final element of the clients list, which is "Ramzi". Therefore, printing this variable in line 5 resulted in printing Ramzi.

	►►Technical Terms: The term argument refers to anything passed inside the parentheses of a function or method. For example, in the code print("Kennedy")the string "Kennedy" is an argument for the print() function.

	3 – The range() and list() Functions

	When designing computational programs—such as spreadsheet applications similar to Microsoft Excel or data analysis tools—a programmer may need to define very large numeric lists to perform specific calculations within the program.
For example, suppose a programmer needs to create a list of integers from 1 to 10000. If this list were defined manually by entering each number one by one, the process would require a significant amount of time and effort. Moreover, such an approach would unnecessarily increase the size and complexity of the code.

	Fortunately, Python provides a convenient and efficient tool that allows programmers to generate such large numeric sequences using a single line of code.

	The range() Function:
The range() function is used to generate a sequence of integers. It begins at the first argument passed to the function, and ends one number before the second argument. An optional third argument may also be provided to specify the step size (increment) of the sequence. Here’s an example:

	1. required_numbers = range(1, 10001)

	Our goal in this example is to generate a numeric sequence of integers from 1 to 10000. To do this, we called the range() function in line 1 above to generate the sequence.
Since the sequence created by this function starts at the first argument passed inside its parentheses, we passed the number 1 as the first argument to start the sequence at 1.
And because the sequence ends at the number immediately before the second argument, we passed 10001 as the second argument to ensure the sequence ends at 10000.
In this example, no third argument was provided to specify the step size, so Python uses the default increment value of the range() function which is +1.
As a result, we obtain a sequence that starts at 1, then 2, then 3, then 4, and so on, all the way up to 10000.
We stored this numeric sequence returned by the range() function in the variable required_numbers.

	The list() Function:
The list() function is used to convert data containers of various types into a list-type container.

	Here’s how we can convert the numeric sequence required_numbers—which we created earlier—into a list:

	2. new_list = list(required_numbers)

	3. print(new_list)

	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17......This is a very large list that goes all the way up to 10000]

	In line 2 above, we called the list() function and passed the numeric sequence required_numbers inside its parentheses. And we stored the list returned by this function in the variable new_list. As we can see from the result of running this code and printing the variable new_list in line 3, we obtained the required list of integers from 1 to 10000.

	⁕ Example 1:

	1. print(list(range(1, 4)))

	[1, 2, 3]

	⁕ Example 2:

	1. for each_number in list(range(1, 4)):

	2. print(each_number)

	1
2
3

	⁕ Example 3:

	1. for each_number in range(1, 4):

	2. print(each_number)

	1
2
3

	⁕ Example 4:

	1. for each_number in range(1, 16, 2):

	2. print(each_number)

	1 +2↓
3 +2↓
5 +2↓
7 +2↓
9 +2↓
11 +2↓
13 +2↓
15

	⁕ Example 5:

	1. for number in range(5, -10, -5):

	2. print(number)

 5 -5↓

 0 -5↓

 -5

	4 – List Dynamics in Python

	By list dynamics in Python, we refer to the ability to modify a list during program execution using commands such as .append(), .insert(), and others, without needing to return to the line of code where the list was originally defined to manually add or remove elements.

	One practical application of list dynamics in Python is that we can start with an empty list—one that contains no elements—and then modify it using commands to achieve the desired goal. Here’s an example:

	Our goal in this example is to use the dynamic approach to create a list of the tenth-power results for the numbers from 0 to 10 (i.e. [010, 110, …, 1010]). We will begin by defining an empty list, and then use a for loop to .append() required elements to it:

	1. exponent_table = []

	2. for each_number in range(0, 11):

	3. exponent_table.append(each_number ** 10)

	4. print(exponent_table)

	[0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000]

	Let’s examine what happens when this code runs:

	After defining the list in line 1, Python executes the for loop in line 2, assigning the variable we named each_number to the first element of the numeric sequence range(0, 11),which is 0. At that point we get: each_number = 0.
Next, Python executes the loop body in line 3: exponent_table.append(each_number**10). This raises each_number (that is currently, 0) to the power of 10 and appends the result, 0**10, to the exponent_table list. This gives us the first required list element.

	The loop then proceeds to the second iteration, assigning the variable each_number to the next element of range(0, 11). This time we get: each_number=1.
Python executes the loop body again and appends 1**10 to the list, producing the second required list element.

	This process continues sequentially for each element in range(0, 11) until the final element is processed. In the end, we obtain the desired list containing the results of raising the numbers from 0 to 10 to the power of 10, exactly as shown by printing the exponent_table list in line 4.

	Keep in mind: This example demonstrates just one of the many possibilities offered by Python’s dynamic lists. Try creating your custom lists to further explore the potential of this powerful feature.

	5 – Statistical Functions: len(), min(), max(), and sum()

	len() Function:
The len() function returns the number of elements in a data container, such as a list. The name len is an abbreviation of length.

	min() Function:
The min() function returns the smallest element in a data container according to Python’s default ascending order for comparable elements. The name min is an abbreviation of minimum.

	max() Function:
The max() function returns the largest element in a data container according to Python’s default ascending order for comparable elements. The name max is an abbreviation of maximum.

	sum() Function:
The sum() function returns the total sum of all elements in a data container.

	⁕ Example 1:

	1. eg1 = [78, "fish", "duck", 404, "pencil"]

	2. eg2 = [5, 0, 10, 2, 3]

	3. print(len(eg1))

	5

	In line 3, the len() function was called with the list eg1 as its argument, which returned the number of elements (5) in the list eg1.

	4. print(max(eg2))

	10

	In line 4, the max() function was called with the list eg2 as its argument, which returned the maximum value (10) in the list eg2.

	5. print(min(eg2))

	0

	In line 5, the min() function was called with the list eg2 as its argument, which returned the minimum value (0) in the list eg2.

	6. print(sum(eg2))

	20

	In line 6, the sum() function was called with the list eg2 as its argument, which returned the the total sum of all elements (20) in the list eg2.

	» Note 9: Calling any of the following functions—min(), max(), or sum()—on a list that contains both string and numeric elements (for example, the list eg1) causes an error. This occurs because Python does not support comparisons between numbers and strings when determining order.

	⁕ Example 2:

	1. brands = ['Xiaomi', 'apple', 'SAMSUNG']

	2. print(max(brands))

	apple

	And based on the same concept explained earlier, calling the function max() on a list of strings returns the last element according to alphabetical order based on the first letter of each string. In our example, calling the function max() on the list brands returned 'apple', because—as mentioned previously—lowercase letters come after uppercase letters in Python’s alphabetical order SAMSUNG < Xiaomi < apple.

	3. print(min(brands))

	SAMSUNG

	In contrast to line 2, calling the function min() on the list brands in line 3 returned 'SAMSUNG', which is the first element based on Python’s ascending order of the first character of each string in the list.

	⁕ Example 3:

	1. name = "SteveJobs"

	2. print(max(name))

	v

	3. print(min(name))

	J

	4. print(len(name))

	9

	Similarly, based on the previous concept, calling the function max() on a given string returns its last character according to Python’s ascending alphabetical order, whereas the function min() returns the first character according to the same order.
Calling the function len() on a string returns the number of characters it contains, noting that spaces between words are also included in the count if present.

	

[image: Do you know about WhatsApp?]

	Do you know about WhatsApp?

	T

	he programmer Brian Acton worked at Yahoo for several years before his ambition led him to apply for a position at Facebook in 2009—an attempt that ended in failure. Undeterred, he and his friend Jan Koum embarked on a major adventure: designing an instant messaging application they named WhatsApp.

	The app sparked a revolution in communication, attracting hundreds of millions of users worldwide and becoming one of the most influential global communication tools.

	WhatsApp’s extraordinary popularity did not go unnoticed by Facebook. The company had been closely monitoring the app, and in 2014, its executives made Acton an astonishing offer: to acquire WhatsApp for a staggering $16 billion. Thus, Facebook acquired the creation of Brian Acton—the very same programmer whose job application it had once rejected—for this incredible sum.

	I am sharing these stories of achievement not merely for general knowledge, but to ignite your passion for learning programming—because, for those with creative ideas, it can open the door to exceptional opportunities!

	6 – Splitting a List into Parts (Slices)

	6.1 – Slicing Syntax

	Very often, while coding, we may need to execute a specific command—such as a for loop—on only part of a list, rather than on the entire list.

	In Python, we can split a list into smaller parts, called slices, by using slice syntax2. Slice syntax returns a new list that contains only the required portion of the original list.

	Slice syntax is written in the form shown in the following Figure 3.2:

	[image: Figure 3.2: Slice syntax]

	Figure 3.2: Slice syntax

	⁕ Example:
In line 1 of this example, we define a list named sandwiches that contains several fast-food meal names. Our goal is to slice this list to obtain a new list consisting of the elements highlighted in orange.

	1. sandwiches = ["Fajitas0", "Burger1", "Mexican2", "Kebab3", "Shawarma4", "Shrimp5"]

	2. sandwiches_slice = sandwiches[0:3]

	3. print(sandwiches_slice)

	[Fajitas, Burger, Mexican]

	In line 2, we used slice syntax to create the required list. This was done by writing the name of the list we want to slice sandwiches, followed by square brackets. Inside the brackets, we entered—in order—the index of the first element we want to include in the slice (0, which refers to "Fajitas"), a colon (:), and the index of the element after the last element we want to include (3, which comes after "Mexican").—This behavior is similar to what we encountered earlier with the range() function second argument that is one number after the required numeric sequence end—And we stored The list returned by the slice syntax in the variable sandwiches_slice.
As we can see from the output produced by line 3, slicing the list resulted in a new list that contains only the required portion of the original sandwiches list.

	4. print(sandwiches[:5])

	['Fajitas', 'Burger', 'Mexican', 'Kebab', 'Shawarma']

	Using slice syntax without specifying the index of the first element, as in line 4, creates a new list that begins with the first element of the original list.

	5. print(sandwiches[-3:])

	['Kebab', 'Shawarma', 'Shrimp']

	Similarly, using slice syntax without specifying the last element creates a new list that ends with the last element of the original list.

	6.2 – Copying Lists Using Slice Syntax, or the .copy() Method

	1. shop = ["bread", "meat", "eggs", "vegetables"]

	2. shop_copy = shop

	3. print(shop_copy)

	['bread', 'meat', 'eggs', 'vegetables']

	In line 1 of the example above, we have a list named shop. Our goal is to create a copy of this list. Accordingly, in line 2, we stored the list shop in a new variable, shop_copy, in order to obtain a copy of the list. We then printed the contents of shop_copy in line 3, and the output confirmed that we successfully created the required copy of the list.

	4. shop_copy.append("fruits")

	5. print(shop_copy)

	['bread', 'meat', 'eggs', 'vegetables', 'fruits']

	Then, in line 4, we called the .append() method on the new list shop_copy to add the element "fruits" to it.

	6. print(shop)

	['bread', 'meat', 'eggs', 'vegetables', 'fruits']

	However, a problem arises when modifying shop_copy in line 4: the original list, shop, is also modified, as shown by printing it in line 6. This demonstrates that this is not the correct way to copy a list in Python. In this case, the variable shop_copy is simply another name, or reference, for the original list shop.

	Copying Lists Using Slice Syntax:

	1. shop = ["bread", "meat", "eggs", "vegetables"]

	2. shop_copy = shop[:]

	3. shop_copy.append("fruits")

	4. print(shop_copy)

	['bread', 'meat', 'eggs', 'vegetables', 'fruits']

	5. print(shop)

	['bread', 'meat', 'eggs', 'vegetables']

	To copy the shop list, we repeated the previous example, but this time we used slice syntax in line 2 to create a copy of the list. We did not specify the index of the first or last element in the slice, so the syntax returns a new list that begins with the first element of the original list and ends with its last element. As we can see from the output after printing the original shop list in line 5, modifying shop_copy in line 3—after copying it using slice syntax—does not affect the original list.

	Copying Lists Using the .copy() Method:

	1. shop = ["bread", "meat", "eggs", "vegetables"]

	2. shop_copy = shop.copy()

	3. shop_copy.append("fruits")

	4. print(shop_copy)

	['bread', 'meat', 'eggs', 'vegetables', 'fruits']

	5. print(shop)

	['bread', 'meat', 'eggs', 'vegetables']

	To copy the shop list in this example, we repeated the previous approach, but this time we called the .copy() method on the shop list in line 2, which returns a new copy of the list. As we can see from the output after printing the original shop list in line 5, modifying shop_copy in line 3—after copying it using the .copy() method—also does not affect the original list.

	7 – Defining Lists Using Comprehension Syntax

	Comprehension lists, or the comprehension style—call it what you like—is an alternative way to define lists in Python. What distinguishes it from the dynamic style—which we explained earlier—is its concise and compact syntax.

	We will begin by comparing these two styles. First, we will revisit a previous example where we defined a list using the dynamic style—specifically, a list of the tenth-power results for the numbers from 0 to 10—Then, we will redefine the same list using the comprehension syntax, to clearly illustrate the difference in code length between the two approaches:

	1. exponent_table = []

	2. for each_number in range(0, 11):

	3. exponent_table.append(each_number ** 10)

	In the previous example, defining the list using the dynamic approach required three lines of code.

	1. exponent_table = [x**10 for x in range(0,11)]

	2. print(exponent_table)

	[0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000]

	However, by using list comprehension syntax, we were able to define the same list exponent_table in a single line of code.

	Comprehension-List Syntax:
Comprehension-list syntax can be compared—both in appearance and behavior—to the for loop.
In terms of how it works: a comprehension list is created by using a for loop whose results are stored as elements in the list being constructed.
In terms of how it looks: comprehension-list syntax resembles for-loop code, but with a more compact structure. Instead of writing the for keyword on one line and the loop body command on the next line, comprehension syntax begins by specifying the command to be repeated and creates the list from its results. The for loop is then completed on the same line, and the entire expression is enclosed in square brackets [], as illustrated in Figure 3.3:

	[image: Figure 3.3: Comprehension-list syntax]

	Figure 3.3: Comprehension-list syntax

	⁕ Example 1:

	1. shop_1 = ["bread", "meat", "eggs", "vegetables"]

	2. shop_2 = [name.upper() for name in shop_1]

	3. print(shop_2)

	['BREAD', 'MEAT', 'EGGS', 'VEGETABLES']

	In line 1 above, we have a list named shop_1 containing several text elements written in lowercase. Our goal in this example is to use list comprehension syntax to define a new list, shop_2, containing the elements of shop_1 converted to uppercase.

	To achieve this, we began defining the comprehension list in line 2 by opening square brackets. We then specified the operation we want to apply to each element: we called the .upper() method on a temporary variable we named name. Finally, we completed the for loop on the same line by iterating over the list shop_1. This structure ensures that the specified operation is applied to every element of shop_1, and the transformed results are collected as elements of the new list being created.

	Here is what happens when Python executes this code:
First iteration:
1. Python assigns the variable we named name to the first element of shop_1, "bread".
2. It then executes the specified operation name.upper(), converting it to "BREAD", and stores this result as the first element of the new list being created.
Second iteration:
1. Python assigns name to the next element of shop_1, "meat".
2. It then executes name.upper(), converting it to "MEAT", and stores this as the second element of the new list.
This process continues for all remaining elements of shop_1. At the end, we obtain a new list containing all the elements of shop_1 in uppercase letters. We stored this new list in the variable shop_2.

	⁕ Example 2:

	Using the comprehension style to create a list of the squares of the numbers from 0 to 10:

	1. power_of_2 = [number**2 for number in range(0, 11)]

	2. print(power_of_2)

	[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

	⁕ Example 2:

	Using list comprehension to create a list of the 3 times table results:

	1. three_times = [number*3 for number in range(0, 11)]

	2. print(three_times)

	[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

	These examples represent only a small sample of the many different lists that can be created using this concise style. Therefore, you are encouraged to practice defining your comprehension lists in order to become more comfortable and proficient with this approach.

	» Important Note:

	Do not skip the purposeful exercises attached to the chapters of this book. In many respects, they are just as effective as studying the chapters themselves. Completing these exercises helps reinforce the material, deepen your understanding, and reveal its practical, real-world applications. Be sure to attempt the exercises on your own, using your approach, before consulting the sample answers provided.

	

Chapter Three Exercise

	1) Define a list named dream_cars and add five elements to it, the names of the cars you would like to own. Arrange the elements starting from the most desired car to the least desired.

	1.1) Use element indexing to print the name of the car you most want to own from this list.

	1.2) Use element indexing to print the name of the second car you most want to own in the following sentence:
The second car I wish to own is [car name here].

	1.3) Choose a car from the list and use element indexing to print its name along with its approximate price in the following sentence (write the price in numbers):
The price of [car name here] is around price USD.

	1.4) Call the .pop() method to remove and store the last element of the dream_cars list, then print it.

	1.5) Delete two additional elements from the end of the dream_cars list: once using the del keyword, another time using the .remove() method.

	1.6) Assign the name dream as another reference to the dream_cars list without changing its original name.

	1.7) Use element indexing to replace the second element of the dream list with the name of a mobile phone you like.

	1.8) Call the .insert() method to add your dream job as an element at the beginning of the dream list.

	1.9) Copy the dream list and store the copy in a variable named costs.

	1.10) Use element indexing to modify the elements of the costs list by each one approximate price in USD. Write the values as integers.

	1.11) Use statistical functions to print the following sentence:
The highest price in the costs list is [largest list element here], the lowest is [lowest list element here], and the sum of the list prices is [total list elements sum here].

	1.12) Use the for loop to print the elements of the costs list, each in a separate sentence followed by the dollar sign '$'.

	1.13) Print the costs list:
- In ascending order without modifying the original list
- Then in descending order
- Finally in its original order

	2) Define a list of numbers from 1 to 1000, then use a statistical function to confirm the number of elements in this list.

	3) Define a list containing the names of four teams you support in soccer or basketball. Arrange them from the most supported team to the least supported.

	3.1) Write code to rearrange the list from least supported to most supported, then print it.

	3.2) Write code to return the list to its original order, then print it.

	4) Using the dynamic style, define a list containing the results of cubing the numbers from 1 to 5, then print it.

	5) Call the range() function to create a list containing the results of the 10 times table (from 0 to 10), then print it.

	6) Use the comprehension style to define a list containing the results of dividing the numbers from 1 to 10 by 4, then print it.

	6.1) Print the last two elements of the previous list as a new list.

	
Solution

	1)

	1. dream_cars = ["Rolls Royce", "Bentley", "Mercedes Maybach", "Lamborghini", "Ferrari"]

	1.1)

	2. print(dream_cars[0])

	1.2)

	3. print("The second car i wish to own is" + " " + dream_cars[1])

	1.3)

	4. print("The price of " + dream_cars[3] + " is around 200,000.00 USD")

	1.4)

	5. car5 = dream_cars.pop()

	6. print(car5)

	1.5)

	7. del dream_cars[3]

	8. dream_cars.remove("Mercedes Maybach")

	1.6)

	9. dream = dream_cars

	1.7)

	10. dream[1] = "iphone"

	1.8)

	11. dream.insert(0, "Social activist")

	1.9)

	12. costs = dream[:]

	1.10)

	13. costs[0] = 0 # I chose zero, since this humanitarian work is a noble act of volunteering.

	14. costs[1] = 340000

	15. costs[2] = 1200

	1.11)

	16. print("The highest price in the costs list is " + str(max(costs)) + ", the lowest is " + str(min(costs)) + ", and the sum of the list prices is " + str(sum(costs)))

	1.12)

	17. for cost in costs:

	18. print(str(cost) + "$")

	1.13)

	19. print(sorted(costs))

	20. print(sorted(costs, reverse = True))

	21. print(costs)

	2)

	22. number_list = list(range(1,1001))

	23. print(len(number_list))

	3)

	24. teams = ["Lakers", "Thunder", "Spurs", "Nuggets"]

	3.1)

	25. teams.reverse()

	26. print(teams)

	3.2)

	27. teams.reverse()

	28. print(teams)

	4)

	30. cube = []

	31. for digit in range(1, 6):

	32. cube.append(digit**3)

	33. print(cube)

	5)

	34. ten_times = list(range(0, 101, 10))

	35. print(ten_times)

	6)

	36. quarters = [a/4 for a in range(1, 11)]

	37. print(quarters)

	6.1)

	38. print(quarters[-2:])

	

[image: Present outline]
BONUS
Jupyter-Ready Interactive Book File

	W

	e’re pleased to offer an interactive file containing all the code used throughout the book. Use it as a convenient reference whenever you want to review an example, run it again, and experiment with different ways to write Python code.

	This file—provided for your use—was created using the interactive JupyterLab environment. JupyterLab is an application designed for writing and running code. One of its most useful features is the ability to divide code into separate cells and execute each cell independently, without having to run the entire program at once.

	The book’s code has been carefully organized within this interactive file so that you can quickly navigate to any example by clicking its title. This makes it easy to run a specific code snippet—and only that snippet—and immediately view its output.

	Next are step-by-step instructions on how to install Jupyter on your device and open this interactive file within it.

	Installing and Running Jupyter

	Option 1: Installing Jupyter on Windows

	1. Click the Search button [image: Image] in the Windows desktop interface and search for: Command Prompt, and open it.

	2. In the Command Prompt window—a black window where you type commands—to make sure that Python is accessible from it, enter the following command and press Enter:
python --version

	If you see a version number, this indicates that Python is accessible.

	» Note: If you see an error or (The command is not recognized), this usually means that Python is not installed on your computer, or that it was not set up correctly.
Make sure Python is installed, and during installation, ensure that the option Add Python to PATH is selected
After installing Python, close the Command Prompt window, open it again, and then enter the command: python --version once more to make sure Python is now accessible.

	3. Then enter the following command in the Command Prompt window to install Jupyter, and press Enter:
pip install jupyterlab

	» Note: If (pip install jupyterlab) does not work, try the command: python -m pip install jupyterlab

	4. Verify Jupyter installation by entering the following command and press Enter:
jupyter --version
If you see a version number, this indicates that the installation worked.
5. Once the installation is complete, to open JupyterLab, enter the following command and press Enter: jupyter lab

	If the last command fails, open JupyterLab using:
python -m jupyter lab

	Option 2: Installing Jupyter on macOS
or Linux

	1. Click the Spotlight button [image: Image] in the Mac interface and search for: terminal, and open it.
On most Linux distributions, you can usually find the terminal in the applications menu, or by pressing Ctrl + Alt + T.

	2. In the terminal screen—a black window where you type commands—to make sure Python is accessible from the terminal, enter the following command and press Enter:
python3 --version
If the previous command fails, also try: python --version

	If you see a version number, this indicates that Python is accessible.

	3. Then enter the following command to install Jupyter and press Enter:
pip3 install jupyterlab

	» Note: If (pip3 install jupyterlab) does not work, try the command: pip install jupyterlab
 If this also fails, try: pip3 install --user jupyterlab
This installs Jupyter only for your account if system-wide installation fails.

	4. Verify Jupyter installation by entering the following command and press Enter: jupyter --version

	If you see a version number, this indicates that installation worked.

	5. Once the installation is complete, to open JupyterLab, enter the following command and press Enter:
jupyter lab

	

Downloading and Opening the Interactive Book File in Jupyter

	[image: Figure B1: Downloading the Interactive Book File]

	Figure B1: Downloading the Interactive Book File

	Download the Interactive-book.ipynb file via the link: https://ahmad-khatib.com/book-file-1
Click the Download button (marked ➀ in Figure B1 above) to save the file to your device.

	[image: Figure B2: Opening the interactive book file in Jupyter]

	Figure B2: Opening the interactive book file in Jupyter

	To open this file in Jupyter:

	
		Open the Jupyter application as explained in the previous section.

		Click the Browse Files button, indicated by ➀ in Figure B2 above.

		Navigate to the folder containing the downloaded interactive book file—which is, by default, the Downloads folder indicated by ➁—then double-click the file named Interactive-book.ipynb to open it in Jupyter.

	[image: Figure B3: Executing code in Jupyter]

	Figure B3: Executing code in Jupyter

	After opening the book’s file in Jupyter you can:

	
		View the file’s headings by clicking the Table of Contents button, indicated by ➀ in Figure B3 above.

		Navigate to any desired piece of code by clicking its title—for example, clicking The print() Function indicated by ➁, to jump directly to the group of code associated with this function.

		Click the desired cell to edit the code, such as the one indicated by ➂.

		Press the Run Code button, indicated by ➃, to execute the selected code cell.

	» Note: If you accidentally modify the interactive book file while experimenting with it, don’t worry—you can always re-download the original file using the provided link.

	
Chapter 4:
The if Conditional Statement

	[image: Have you ever heard of the “clever fox” employee known as A.B.?]

	Have you ever heard of the “clever fox” employee known as A.B.?

	A

	fter earning his degree in computer science, A.B., who lived in the Bay Area, landed a position in quality assurance. Thanks to his sharp intelligence and deep understanding of software, he managed—within just eight months—to design a computer program that performed all of his tasks on his behalf. The result? He spent nearly six years at work doing no real work at all.

	A.B. describes the experience—more or less—as follows:

	“For almost six years, I didn’t actually work. I’m not joking. I showed up for my 40-hour workweek, played League of Legends, browsed Reddit, and did whatever I wanted. Over those six years, I probably did no more than 50 hours of real work. No one at the office noticed anything unusual. All tasks were completed exactly as expected. I didn’t have friends in the department; the only people who ever spoke to me were my manager or the developers whose software I occasionally tested.”

	Source: Payscale Career News (adapted).

	I am not sharing the story of this ingenious individual to encourage you to deceive your manager or avoid responsibility at work. Rather, I present it to demonstrate the extraordinary power of automation, which lies at the core of modern computing.

	In this chapter, we will explore some of the fundamental tools of automation.

	

Continue Your Python Journey
 Thank you for reading this sample of Python Programming for Beginners. The complete book guides you step by step from absolute beginner to confident Python programmer through clear explanations, practical examples, and hands-on exercises designed to build real skills. You create projects such as a grocery accounting program,
 an interactive program providing information about famous films and TV shows, a practical object-oriented program simulating the American National Football League (NFL), and more — all designed to make learning fun.

 Continue with the full book here:
 https://www.amazon.com/dp/B0GJGG8K3P
 Programming is a skill built through practice.
 Keep going — you may be closer than you think to your next milestone.
 I wish you success on your coding journey.
 — Ahmad Al-Khatib

	images/image-3.png
facebook

Log nto Facebook

images/image-7.png
PyCharm

Version: 2022352
Buic: 22586748

26 Jaruary 2025
System requirements
Instalation nstructions

Other versions

Comingin20231 WhatsNew Features Lear

Download PyCharm

¥ Windows

mac0s Linux

Professional Community
For both Scentificand Web Python For pure Python development
dovelopment. With HTML,J5, and SOL

o0 30-day uial available AN

mg (3ppie Sitcor)

© setec an tstatter for tet o Appe sttic]

e —

JSelect the
*operating system

Select the
appropriate version
“based on the device
specifications

cover.jpeg
THE 2026 UPDATED EDITION

PYTHON PROGRAMMING
- FOR BEGINNERS

.\\

Dol

-/////— l\E\\:\\\.

A Hands-On Crash Course
With Step-by-Step Projects to Learn
Python Fast and Build Real-World Skills

images/image-21.png

images/image-6.png
python.org

Download the latest version for macOS

Looking for Python with a d,A&at 057 Python for Windows,
Linux/UNIX, mac0s, Other

Want to help test development versions of Python? Prereleases,
Docker images

images/image-2.png

images/image-2.jpeg
B A&

MINECRRAFY

| w B4

images/image-20.png
-~ Fle Edt View Run Kemel Tebs Settings Help
INTERACTIVEBOOK-FILE 1IPYND.

O~ Crapter 1 - An Exploratony Tourin Pytnon.
T
Sy (>
» om,mmwwmmmoums
B e emi oo i i
oo
it
R vttt
e oreiei o AN
e et e
e e
e
et
g
et
Bl
T,
comissen

= eracie ook e Lo x |+

B+ X 00w Con Madom v

Notsbook D3 8

LS
chapte®!

An Exploratory Tour in
Python

1 The print() Function i

prane('1 scarced programming!”)
1 scarced programing!

prine(he saya: Hello moni™)
He saysi“Hello monl™
e saya: Hells momi o

el 1op3e], e 1
princ(e. says: Hello moni”)or

Symtacrron: Smalid syntax. Perhaps you forgat 3 com:

printChonjoun <ext mi")

prine(‘Bonfour <'est mi’)

Mode: Command. @ Ln

images/image-15.png

images/image-14.png
°
We begin the
statement with
the for keyword,
which in this
context translates
to "for each
individual item.

each holder ticket holders:
0, 0

Nexlt, we deffme a
variable name.
You can choose

any name you
wish to represent
the current item
in the loop.

©

We then include
the in keyword,
which creates
the link between
our variable and
the data source.

¢
Following in, we
provide the
name of the list
(or container)
that we want to
loop through.

o
Finally, We end
e lime wildh & (3)
This colon
indicates that the
subsequent lines
are subordinate
to this loop.

images/image-5.png
My Personal Blog

home

Blog Posts

Post 8

images/image-17.png
First, we initialize the list o
comprehension using square
brackets. Inside, we place
the expression that defines
how the items in the new list
should be generated.

Next, we provide the for loop, and specify the
data container to be processed. This loop tells
Python to apply the initial expression in o to
every item in this container, automatically
populating the new list with the results.

images/image-16.png
example [nl:n2]

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ Gﬁ_ﬁ_,__ﬁJ L__e__1

) °
To write a slice, Directly after the name, we add square brackets [] to define the
we begin by boundaries of our slice. Inside the brackets, we enter the index of the
entering the first element we want, a colon (:), and finally the index of the element
name of the list that follows our last required item.
to be sliced Why the extra number? Python stops just before the end number. So, if

we want elements up to index 3, we use 4 as a stop number. Think of the
second number as a "stop sign"—you reach it, but you don't include it in
vour results.

images/image-19.png
= Fle it View Run Kemel Tabs Setings Hep
,5-.ac C Lo

° -

e - ot Modited
T Downond 1 minuteago &
gy e 21 minses a0

™ Desktop 11 hous ago
- vdeos 16 hours g0

images/image-18.png
interactive-book-file / Intera

ive-book-file-aripynb (5

@ AhmadAl-Khatib Add files via upload 9facbe - 3weeksago <D History

L T —

images/image-4.png

images/image-8.png
o000 ‘Welcome to PyCharm

Get from VCS.

(] Pvam Q el o
I © Uy

Customize
Plugins.

Learn

Take a quick onboarding tour
Ne

Start Tour

images/image.jpeg
print ('He says:"Hello mom! -» He says:"Hello mom!"

An example of a correct code that leads to printing the required result.

print ("He says:"Hello mom -» An example of code that leads to error.

images/image-9.png
New Project

Location: | /Users/ahmadal-khatib/PycharmProjectsf

~ Python Interpreter: New Virtualenv environment

using | @ Virtualenv v v

* New environmer

Location: [Users/ahmadal-khatib/FyeharmProjects/pythonProject2/veny

Base interpreter Jusr/local/bin/python3.11

Make available to all projec

Previously configured interpret

Create

images/image.png

images/image-1.png

images/image-1.jpeg
print ("Bonjour c'est moi") > Bonjour c'est moi

An example of a correct code that leads to printing the required result.

print ('Bonjour c'est moi') - > An example of code that leads to error.

images/image-10.png
P
°
-

LT e C AL T-RAR 3

oy I T {

Gnsnoy
rm
hExtal Ubrais
P Seratcne and Console

Pross DaubLe to search everymere for classes, 4 U windous, actions, and settings

£ print_ni(rane)
BrANECE°Hi, {nane}') # ross xFb to tosgle the breakaoint

L A T e T T S S i
i, Pyonarn

) B

Ny

Prosess fintshed witn exit cae

-

N

£
i
i

D e [e Fae
- P A e e

images/image-12.png
country name "Egypt'
* —

5 -
Variable Value

images/image-11.png
— ‘
T D 5 i B

Pygam 19 axdopan sourc cros.plaform sy or 1 developmant of e appicaions I o games sig Py 1
o 18 Sl ectvacta Layor by and savarl thr populr ares 0 abetract e mostcommon uncans, makig wring thesa s a

W o oo @ Pyt Cols 0 S

images/image-13.png
Python "quotes":
Coding like poetry should be short and concise. - Santosh Kalwar
First, solve the problem. Then, write the code. - John Johnson
Make it work, make it right, make it fast. - Kent Beck
\t \n
Python \
Python.

